
VALENCE

Prof M.Brouard 8 Lectures

SUMMARY

The aim of this lecture course is to provide an introduction to valence theory. This is

the theory used to describe the chemical bond. The goal of the theory is the prediction

of molecular structure, and of the forces which drive chemical change. Valence therefore

lies at the very heart of chemistry. The main topics to be covered in the lecture course

are:

1. The Born-Oppenheimer Approximation

2. Bonding in H+
2

• the LCAO approximation

3. Many electron molecules

• the orbital approximation, its strengths and weaknesses

• binding in H2

• splitting of degenerate configurations

• dissociation of H2

4. Application of the variation principle to find LCAO’s

• the secular equations

5. Binding of the first row diatomics

• splitting into terms, and

• levels

6. Walsh diagrams

• Bond angles in AH2 systems

7. Hückel theory

• use of symmetry

• aromaticity

• bond order, electron densities, and organic reactivity

8. Correlation Diagrams

• predicting chemical reactivity

RECOMMENDED TEXTS

1. P.W. Atkins and J. de Paula, Physical Chemistry, (O.U.P., 7th Edition, 2002)

2. P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics, (O.U.P., 4th

edition, 2004).

3. N.J.B.Green, Quantum Mechanics I and II (O.U.P., Chemistry Primers 48 and

65).

4. J.N. Murrell, S.F.A. Kettle and J.M. Tedder, Valence Theory (Wiley and Sons,

1974). Unfortunately out of print but widely available in libraries.

5. J.M. Brown, Molecular Spectroscopy, (O.U.P., Chemistry Primer 55).
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VALENCE PROBLEM SHEET 1

1. Derive the secular equations for the trial wavefunction of the form

ψ = cAφA + cBφB

where φi is the normalized atomic orbital on atom i, and the ci are coefficients.

2. Show that, when the atomic orbitals, φi, are orthogonal (such that Sij = 0 for

i 6= j), the roots of the secular equations derived in question 1 are given by:

E± =
HAA +HBB

2
± 1

2

[

(HAA −HBB)
2 + 4H2

AB

]1/2

3. Find the coefficients ci for the molecular orbitals associated with E+ and E− for

the special cases HAA = HBB (i.e. a homonuclear diatomic), and HAA = 2HBB =

α, HAB = α/4.

4. Two states, characterized by the wavefunctions ψ1 and ψ2, arise as eigenfunctions

of some simple approximate Hamiltonian for a diatomic molecule, and have en-

ergies ǫ1 and ǫ2, respectively. When the full Hamiltonian is considered, a small

interaction 〈ψ1|Ĥ |ψ2〉 = ∆ between these states occurs. By considering trial wave-

functions of the form Ψ = c1ψ1 + c2ψ2, and using the variational principle, find

general expressions for the two lowest energy levels.

[Hint: the procedure leads to secular equations - use your knowledge of the prop-

erties of eigenfunctions to find the matrix elements, then make use of the result

in question 2 above.]

5. In question 4, the energies ǫ1 and ǫ2 vary with internuclear separation R as ǫ1 =

K(R− 3), ǫ2 = −K(R− 3), whereas ∆ = K/10 is a constant. Evaluate and plot

the two lowest energy levels at R = 3.0, 3.0± 0.1, 3.0± 0.2, 3± 0.5, and 3 ± 1.0.

Plot also the ratio |c1/c2| as a function of R for each associated eigenfunction.

[This question illustrates the origin of the ‘non-crossing rule’.]
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VALENCE PROBLEM SHEET 2

1. Discuss the data on the following diatomic molecules, showing how they reflect

the character of the occupied molecular orbitals.

r/pm ωe/cm
−1 De/eV E⋆/eV I/eV

N2 110 2359 9.76 6.22 15.58

N+
2 112 2207 8.71 1.14

NO 115 1904 6.50 0.015 9.26

NO+ 106 2376 10.84 6.47

O2 121 1580 5.12 0.98 12.07

O+
2 112 1905 6.66 0.024

[ ωe is the harmonic vibrational wavenumber, De the bond dissociation energy, E⋆

the energy of the first excited electronic state, and I is the first ionization energy. ]

2. Some of the spectroscopically determined properties of the low lying states of the

C2 molecule are shown below:

Term symbol Energy/cm−1 Vibrational frequency/cm−1 Bondlength/Å
1Σ+

g 0 1856 1.242
3Πu 610 1641 1.311
1Πu 8392 1608 1.318
1Σ+

u 43240 1830 1.238

Describe how these properties are related to the character of the molecular orbitals

occupied in these states (note that the πg orbitals are not involved).

3. The eigenfunctions for an electron (j) confined to a circular ring are

ψm(j) =

√

1

2π
eimφj

where m is the quantum number and φj is the angular position of electron j on

the ring, and the spin functions for electron j are α(j) and β(j). A selection of

model, two-electron wavefunctions can be written

(a) Ψa =
1√
2
[ψ1(1)ψ−1(2)− ψ1(2)ψ−1(1)]α(1)α(2)

(b) Ψb =
1

2
[ψ1(1)ψ−1(2) + ψ1(2)ψ−1(1)] (α(1)β(2)− α(2)β(1))

(c) Ψc =
1

2
[ψ1(1)ψ−1(2)− ψ1(2)ψ−1(1)] (α(1)β(2) + α(2)β(1))

(d) Ψd =
1√
2
[ψ1(1)ψ1(2)] (α(1)β(2) − α(2)β(1)) .

For each of these wavefunctions in turn

i. Show that it satisfies the Pauli Principle (i.e. is antisymmetric with

respect to exchange of the labels of electrons 1 and 2).

ii. Show that it is an eigenfunction of the operator L̂Z = −i~
(

∂
∂φ1

+ ∂
∂φ2

)

,

and hence assign a spectroscopic term symbol Σ, Π, ∆, etc. depending

on the eigenvalue obtained (i.e. Λ ≡M = m1 +m2 = 0 ⇒ Σ, etc.).

iii. If the answer to (i) is Σ, determine the effect of changing φ1 and φ2 to

2π − φ1 and 2π − φ2 (equivalent to reflecting the coordinates of each

electron in a plane perpendicular to the ring) and assign the symbol Σ+

and Σ− accordingly.

iv. Determine the effect of interchange of φ1 and φ2. Note that the spatial

parts of triplet wavefunctions are antisymmetric and singlet functions

are symmetric under this operation.

The motion of an electron around the internuclear axis of a diatomic molecule

is analogous to motion on a ring. Use the above results to explain why the

spectroscopic term symbol for the ground electronic state of O2 is 3Σ−
g .

4. Account for all of the following observations:

(a) the term symbols for the electronic ground states of Si2 and C2 are 3Σ−
g and

1Σ+
g respectively;

(b) the lowest two electronic states of S2 have term symbols 3Σ−
g and 1∆g;

they are separated by about 4000 cm−1 (0.5 eV) and have very similar bond

lengths;

(c) The dissociation energy of Mg2 is only 0.1 eV;

(d) The first excited electronic state of NO lies only 0.015 eV about the ground

state.
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VALENCE PROBLEM SHEET 3

1. Use Hückel theory to construct the secular equations for the π orbitals of the allyl

radical shown below.

CH
2

CH
2

CH

Determine the molecular orbital energies and the linear combinations of atomic

orbitals associated with them. Estimate the electron spin densities at each carbon

atom of the allyl radical, and use your result to predict the ESR spectrum of the

allyl radical radical in solution, stating clearly any approximations that you make.

[If you are unfamiliar with ESR spectroscopy, you might find it helpful to read

Atkins and de Paula pp 615 -621.]

Show that the charge density arising from the π electrons is uniform at each carbon

atom in the allyl radical. Suggest the most likely point of attack on the allyl cation

by a nucleophilic reagent.

2. The kth molecular orbital for a linear chain of N carbon atoms has the form

Ψk =
∑

m=1,N

φm sin

[

mk π

N + 1

]

where φm is a pπ orbital on atom m. Find its energy within Hückel theory by

direct substitution into the secular equations.

Sketch the lowest three orbitals for a six-membered chain. By considering the

relative phases of each molecular orbital on the first and last atoms, show that

orbitals with even values of k are destabilized, and those with odd values of k are

stabilized if the chain is converted to a ring.

3. To model the steric interactions in cis-butadiene an interaction between terminal

atoms 1 and 4 is introduced (H14 = H41 = −β/10). Using perturbation the-

ory, examine how the normal Hückel molecular orbital energies for butadiene are

affected by this additional term. (Use the m.o.’s obtained in the lectures.)

4. An end-on view of the biphenyl molecule is sketched in the figure, defining the

torsional angle φ between the planes of the benzene rings.

j

If the inter-ring interaction is ignored the Hamiltonian is simply:

H0 = −~
2

2I

∂2

∂φ2

where I is the appropriate moment of inertia. Show that

ψm =

√

1

2π
eimφ

is an eigenfunction of this Hamiltonian, determine the possible values of m, and

the associated energy levels for the torsional motion.

To allow for inter-ring interactions, a term

V = V2 cos 2φ

is added to the Hamiltonian. Discuss the form of this term, and the likely sign of

V2.

The effect of V on the low-lying excited states of the torsional motion may be

found (approximately) by taking a trial wavefunction

χ = c+1ψ+1 + c−1ψ−1

and solving the secular equations in the basis (ψ+1, ψ−1). Determine the new

excited state energy levels, and sketch the probability distribution for φ in the

first excited state.

Discuss the limitations of this approach as V2 increases.
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